Relative Chern Character, Boundaries and Index Formulæ

نویسندگان

  • PIERRE ALBIN
  • RICHARD MELROSE
چکیده

For three classes of elliptic pseudodifferential operators on a compact manifold with boundary which have ‘geometric K-theory’, namely the ‘transmission algebra’ introduced by Boutet de Monvel [5], the ‘zero algebra’ introduced by Mazzeo in [9, 10] and the ‘scattering algebra’ from [16] we give explicit formulæ for the Chern character of the index bundle in terms of the symbols (including normal operators at the boundary) of a Fredholm family of fibre operators. This involves appropriate descriptions, in each case, of the cohomology with compact supports in the interior of the total space of a vector bundle over a manifold with boundary in which the Chern character, mapping from the corresponding realization of K-theory, naturally takes values.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

ar X iv : 0 80 8 . 01 83 v 1 [ m at h . D G ] 1 A ug 2 00 8 RELATIVE CHERN CHARACTER , BOUNDARIES AND INDEX FORMULÆ

For three classes of elliptic pseudodifferential operators on a compact manifold with boundary which have ‘geometric K-theory’, namely the ‘transmission algebra’ introduced by Boutet de Monvel [5], the ‘zero algebra’ introduced by Mazzeo in [9, 10] and the ‘scattering algebra’ from [16] we give explicit formulæ for the Chern character of the index bundle in terms of the symbols (including norma...

متن کامل

Some Index Formulæ on the Moduli Space of Stable Parabolic Vector Bundles

We study natural families of ∂-operators on the moduli space of stable parabolic vector bundles. Applying a families index theorem for hyperbolic cusp operators from our previous work, we find formulæ for the Chern characters of the associated index bundles. The contributions from the cusps are explicitly expressed in terms of the Chern characters of natural vector bundles related to the parabo...

متن کامل

Connes-Chern character in relative K-homology

Lecture 1 (Pflaum): Title: Relative cohomology and its pairings Relative cyclic cohomology theory and its pairings turned out to be a powerful tool to explain crucial properties of certain invariants in global analysis such as for example the divisor flow. In this talk, the homological foundations for pairings in relative cyclic cohomology will be explained. Moreover, the relative Chern-charact...

متن کامل

Eta Forms and the Chern Character

The semi-topological nature of the eta-invariant of a self-adjoint elliptic differential operator derives from a relative identification with a Chern character. This remarkable semi-locality property of the eta-invariant can be seen in spectral flow formulae and many other applications [APS2, APS3, BC1, DZ1, L1]. In this paper we prove two geometric index theorems for a family of first-order el...

متن کامل

Quillen’s Relative Chern Character Is Multiplicative

In the first part of this paper we prove the multiplicativ property of the relative Quillen Chern character. Then we obtain a Riemann-Roch formula between the relative Chern character of the Bott morphism and the relative Thom form.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008